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Exact solution to line source scattering by an ideal left-handed wedge
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A wedge or prism is a common geometry used in experiments involving left-handed media (LHM). It is
shown that an exact analytical solution to the canonical problem of scattering by a LHM wedge or prism is
feasible in the limit of no losses. The solution reproduces the ideal point image announced by Pendry which
has not been observed experimentally. The analysis also results in the introduction of a new kind of resonator

or photon localization device.
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Thirty-five years ago Veselago [1] proposed a hypotheti-
cal negative-index material also known as left-handed media
(LHM), where the phase velocity and energy flow in oppo-
site directions and where the vector trio E, H, and E XH
form a left-handed orthogonal system. Pendry and Ra-
makrishna [2,3] argued that a LHM slab can amplify evanes-
cent modes, allowing a complete reconstruction of a point
source to a perfect point image, with none of the conven-
tional optical limitations. The scarcity of materials available
for experiments has contributed to considerable controversy
over the expected optical properties for LHM. Although
negative refraction is pretty much accepted in view of the
recent experiments of Parazzoli et al. [4], and Houck er al.
[5], one item that remains in controversy is superlensing:
evanescent-wave considerations and simulations predict it
[3,6,7]; however, measurements of LHM slabs show no evi-
dence of it. It should be noted in this context that superlens-
ing has recently been predicted analytically for some type of
optically active media [8].

Experimental LHM materials have been composed of a
periodic array of elements a fraction of a wavelength in size
[9-12]. These materials are nonuniform and anisotropic;
typically, a periodic array of split-ring resonators (SRR’s) in
combination with wires, of the type first proposed by Pendry
et al. [13]. Such discreteness in the material, together with
significant losses, has been blamed for the lack of confirma-
tion of perfect focusing. Actually, even the ability to surpass
the diffraction limit has also been questioned theoretically
[14].

A shape that has been employed consistently in measure-
ments of LHM optical properties is the wedge or angled
prism [5,7,9]. Hence the problem of LHM wedge scattering
under microwave horn illumination (or its equivalent, a line
source) is of significant current interest. The LHM wedge is
a scattering canonical shape which belongs to the class of
penetrable objects for which it is assumed that an exact ana-
lytical solution is not possible [15,16] [only non penetrable
wedges such as perfect electric conducting (PEC), perfect
magnetic coupling (PMC), or characterized by an impedance
boundary condition (in the manner of Maliuzhinets) do admit
a solution].

It is shown in this paper that the ideal unit-index LHM
wedge is an exception to the rule and admits an exact ana-
lytical solution to the scattering problem. In doing so, it is
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proven that in the limit of negligible losses the solution does
provide one with an ideal reconstruction of the image, just as
envisioned by Pendry ef al. as a side result, it is found that a
metal-coated wedge, half filled with LHM and half empty,
constitutes a new open resonator with photon localization
characteristics. The analytical solution is validated against
numerical experiments.

The geometry of the problem is shown in Fig. 1 for a
wedge angle of 2a, and an electric line source is described
by angle 6, and distance p, from the vertex (the e~ time
convention is assumed and suppressed throughout). We are
assuming e=u=-1+i4d in the limit as 6—0.

Edge illumination is critical and can be approximated by a
local plane wave hitting the vertex. Here we find a paradox.
This is illustrated in Fig. 2, which contemplates illumination
of the top face of the wedge, by a bundle of rays coming
from the source. Figure 2(a) depicts power flux arrows based
on negative refraction (Snells’ law) for matched LHM of
index —1. As the angle 6, is decreased with respect to the
scenario depicted by Fig. 2(a), the refracted bundle of rays
will propagate in a direction that will approach the tangent
vector of the wedge lower face. This is presented in Fig.
2(b), where the discontinuous nature of the power flow on
the wedge lower face is deemed acceptable (this is consistent
with polaritons, which can be used to mend a ray optics

Y

FIG. 1. Geometry of the problem. The wedge angle is 2«, and
the line source is described by angle 6, and distance p, from the
vertex.
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FIG. 2. Ray optical power flow picture applied to the wedge and
used to restrict the incidence angle. (a) Acceptable scenario because
double refraction is evident. (b) Double refraction occurs far away
and emerging beam can be associated with an additional source,
resulting in a paradoxical solution.

picture). As we approach such a critical angle of incidence,
double refraction takes place farther and farther away from
the vertex, and the absence of losses makes the full power
come back, reminiscent of a source at infinity, as depicted by
the lower arrows in Fig. 2(b), which make up the doubly
refracted emerging beam.

It appears that a plane-wave solution of the scattering
problem will be plagued by these paradoxical artificial
sources. Since a line source can be seen as a bundle of plane
waves, we expect the exact analytical solution for a line
source to be constrained to incidence in such a way that the
paradoxical situation is avoided. Making use of the ray pic-
ture presented above, it can be shown that incidence such
that 6, <3« leads to artificial sources. Accordingly and via
use of symmetry, incidence is restricted here as follows:

3a< 6y <2m-3a.

(1)

The problem is simplified by splitting it into two half-
space even and odd parts. The field everywhere is built up of
the superposition of the two solutions, which cancels the
singularities that would have otherwise been present at the
location of the mirror image of the original source. This is
sketched in Fig. 3, where (a) illustrates the odd geometry
with a PEC ground plane and (b) sketches the even geometry
with a PMC ground plane.

First we analyze the odd case. As the electric field must be
zero when the azimuth angle =0 and 6=, we expect so-
lutions with angular dependence of the form sin(v6) in the
LHM wedge region and of the form sin[ v(7— 6)] in the free-
space region, for v is the parameter for the spectral or other-
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wise general decomposition. Hence we propose

sin(v6) SO 0y kp) 0 e (0,a),
f sin(va)
Eoq= | dv
o | AT 01y k), 6 ().

sin(v(m— a))
()

The radial functions Q" (v,kp) and Q® (v, kyp), solutions of
the wave equation, need to be found so as to enforce conti-
nuity of the electric field across the material interface at 6
=a. This is a problem with historical roots. The root of the
problem is that phase continuity cannot be maintained with
fully orthogonal radial eigenfunctions corresponding to dis-
similar speed materials. For instance, for k; # k, and assum-
ing only ordinary materials, the function sets H' )(klp) and
H( (k,p) are incompatible because a set of functlons or-
thogonal to H( )(k,p) will not be orthogonal to H )(kzp)
resulting in 1ntegral equations for the expansion Coefﬁments
rather than closed-form expressions, as in the case of a PEC
wedge [15].

The radiation condition in the free-space region dictates
that for p> py, (v, kop) must be of the form H(Vl)(kop). On
the other hand, in the LHM wedge region, the radial solution
for p>p, must be a linear combination of H >(kp) and
H(2 (kp). In our case k=—k, and strictly speakmg, using the
fact that a causal solution requires Im(k)>0 and taking the
limit of vanishing small losses indicates that, more precisely,
k=kye'™. This is a critical detail in view of the branch cut
(=0,0) of the Hankel functions. The circuit relations for
transitions to different functional branches across the branch
cut can be shown to reduce to H(z)(ze‘”) e""H 1)(z)
+2 cos(rm-)H(2 (z) and H(l)(ze”T)— e '"H 2)(z) By using z
=kop, the above leads to

H\(kop) = "™ HP (kp) + 2 cos(vm)H(kp).  (3)

This equation is of critical importance because the right-hand
side represents a valid solution in the LHM wedge region,
whereas the left-hand side is a valid solution in the free-
space region. This establishes a connection between the two
solutions and enables us to enforce continuity across the in-
terface. In view of Eq. (3), we can use Hil)(kop) also as a
radial solution in the LHM wedge region.

In the inner region where p < p,, only Bessel functions are
allowed because of energy integrability conditions. In a simi-
lar fashion, we can demonstrate that in the inner region, the
eigenfunctions are related via J,(kop)=¢~"""J,(kp), indicat-
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ing that we can use J,(kgp) in the inner region, both inside
and outside the LHM wedge region. This simplifies matters
greatly and enables us to obtain a closed-form solution to the
problem at hand.

Hence we are left with

Eoua= f dvW (v)J (kop=)H'\" (kop-~)

s'in(vﬁ) , 0 0.a).
y sin(va) @
sin[ v(7— 0)] 6 e (am.

sin[v(m— )]’

where p. and p- denote the minimum and maximum of
(p,po)- The equation maintains continuity of the electric field
across the interface at #=a, as well as across p=p,, and
satisfies the boundary conditions on the ground plane. The
unknown spectral function W(») and range of integration
will be obtained from satisfying the jump conditions in the
magnetic field at the source location and the continuity of the
radial magnetic field at f=q.

From the identity H,=(iknp)~'dE/36 we obtain via Eq.
(4) that enforcement of the continuity of the radial magnetic
field at @=« results in

0= f dvW ()] (kop=)H'\D (kop=){cot(va) — cot[ v(m— a) T}

(5)

On the other hand, using the identity H,=—(ik7)"'dE/dp and
the fact that the jump in magnetic field is equal to the current
according to 18(6— 6y)/2py= Hy| o~ Hy| -, leads to

%5(0— ) =f AV (v)
sin(v6)
m, 0e(0,a),
sin[ v(7— 60)]
B sin[v(7m—-a)]’ 0 (am.
(6)

Note that we are using an extra factor of 1/2 because the odd
current source has amplitude I/2. In deriving Eq. (6), use
was made of the Wronskian function for cylinder functions
[15].

To solve the system (5) and (6), we note that closure
relations similar to Eq. (6) are exploited in the case of a PEC
wedge, where the eigenvalues are discrete. Accordingly, we
assume that the spectrum is discrete, from which Eq. (5)
results in the eigenvalue equation cot(va)=cot[v(7—a)],
which can be easily solved to yield

ni

V=

)

T—-2a

for n an arbitrary integer. Use of this in Eq. (6) results in
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Ik
SO0 59— 0)
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W(v) | sin(v6), 0 (0,a), ®

~ sin(va) | —sin[v2a-0)], 0¢€ (a,m).
By defining the functions S(Vi)(ﬁ) as follows:
sin(v0), 0e(0,a),
NRGEY 9
v (0) V{isin[v(2a— 0], 6e(am), ©

where A,=g,/(m-2a) and ¢,=2 for n=1,2,3,..., except
for gy=1. It can be shown that the following orthogonality
identities are satisfied

f dos'*(0)s® (0w () = J des(6)S(6) = 6, .
0 0

(10)

Here 7=m/(m—2a) and &,, stands for the Kronecker
delta, and the weighing function w(6) is given by

-1, 60e(0,),
m(ﬁ)z{ 0.0 (11)

1, 0Oe(am.
It appears that the discontinuous character of the weighing
function is peculiar to LHM wedge regions.
Operating on Eq. (8) with [Jd 05(:)(0), we obtain, upon
using Egs. (9) and (10),

Ik
V(1) = ™Koo

sin(va)A, S (). (12)
Use of this in Eq. (4) results in a compact expression for the
odd-mode electric field:

_ 1 7Tk0 Mo
odd — 4

> I kop<)H'D (kop=) ST (8,)S5P(6).

(13)

Here the sum is extended over all positive integers n (there is
no contribution from the n=0 term).

The even solution can be obtained by similar means; here,
we just quote the final result

Ikyn,
Eaan="—y 21 kop ) (kop=) € (0,)C;(0).

(14)

where now there is contribution from the n=0 term; further-
more,

cos(vb),
+cos[v(2a - 6)],

0e(0,a),

0e (a,m), (15)

ci?(o) =AV{
and the coefficient A, is the same one introduced in the odd
case.
The final solution is obtained by simply adding the even
and odd contributions from Egs. (13) and (14), respectively;
we obtain
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FIG. 4. (Color) E-polarized line source excitation on wedge of
angle « on top of a ground plane) with @=30° 6,=90°, f
=10 GHz (A=3 cm), and py=9 cm. (a) Series solution showing E
field amplitude (rms) and (b) ray optics description of image for-
mation showing nodal plane (dotted line).

I7kyn -
E=- %2 Jv(k0p<)H(,,1)(k0p>)
n=0

,Jcos{f2a—(0+ )]}, Oe (-a,a),
Y1 cos[v(0— 6y)], 0e (a2m-a).
(16)

This is the exact solution for the total electric field, for

n
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FIG. 5. (Color) Photon localization by means of a PEC internal
wedge of angle 2« containing a LHM wedge of angle «. (a) Ge-
ometry (b) Phase series solution corresponding to «=30°, f
=10 GHz (A\=3 cm), and py=9 cm. Ray tracing can also be used to
show localization in the wedge region.
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|E| [V/m]

FIG. 6. (Color) Magnitude of the time-harmonic field |E(¢)| for
a=30°, 6,=90°, pp=9 cm, and f=15 GHz. Series solution (nor-
malized). The vertex is at the center of the polar graph.

E-polarized line source excitation, and is valid everywhere;
in free space and in the LHM wedge.

Since exact solutions for penetrable materials are virtually
nonexistent, the above solution is a significant addition to the
theory of diffraction by material wedges. The solution is also
applicable to H-polarized (magnetic) line source excitation,
in which case Eq. (16) represents the total axial H field. This
extension comes from recognizing that the LHM wedge is
self-dual and that under duality E—-H, H—-E, and pu«<e.
Hence, application of duality to the present configuration
translates directly into the H-polarization problem.

The above solution has been implemented numerically,
and a few representative calculations follow together with a
discussion of the physics behind the solution. In the series
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FIG. 7. (Color) HFSS solution for a slightly lossy LHM wedge
cylinder. Magnitude of the time-harmonic field |E(¢)| for a=30°,
0=90°, pp=9 cm, f=15 GHz, e=pu=-1+i0.001, distance from
vertex to circle center of 24 cm, and circle radius 12 cm (flat wedge
side ~20.78 ¢cm). The smooth finite structure reduces the distur-
bance of the required polaritons (a disruption is present at the point
of discontinuity in curvature). In spite of the finiteness of the model,
the image appears at the interface just as predicted by the series
solution.
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calculations we are setting —Iky7,/4=1 for convenience.

Our first example is given by an odd geometry (wedge of
angle « on top of a ground plane) with @=30°, 6,=90°, f
=10 GHz (\=3 cm), and p,=9 cm. The electric field ampli-
tude (rms) was calculated via the series solution for p
<12 cm (convergence was reached), and the solution is pre-
sented in Fig. 4(a). The geometry was chosen because, since
0y=3a, the image, as dictated by ray optics, occurs at the
LHM interface at the distance p, from the vertex [see Fig.
4(b) for ray tracing]. However, reflection on the conducting
boundary adds a 180° phase shift on the image, and since
source and image behave as equal-amplitude sources on the
interspace between them, the oddness of the electric field
results in a nodal line being formed at §=60°. The nodal line
is evident in the simulations.

The above example illustrates the existence of a nodal
plane. Since for E polarization a nodal plane can be replaced
by a conductor, we have that the reduced geometry within
the metal walls is characterized by a sourceless (nonforced)
solution of the field equations and hence constitutes an open
resonant cavity or photon localization device. This is illus-
trated in Fig. 5(a) which shows the resulting PEC internal
wedge of angle 2« containing the LHM wedge of angle a.
For completeness, the series solution for the phase is pre-
sented in Fig. 5(b) corresponding to a=30°, f=10 GHz (A
=3 cm), and py=9 cm. The phase surface shows a smooth
valley at the location of the image, which indicates that the
phase velocity (aligned with the phase gradient) points to-
wards the source in all directions. This is correct because the
image is at the air-LHM interface and power is opposite to
phase on the LHM side, indicating that power flows by the
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location of the image (which is not a source). Localization in
the wedge region can also be shown via ray optics (not
shown), as any ray emitted from a point on the interface
region travels back in phase to the place of origin after a trip
consisting of a single refraction (air-LHM interface) and
double reflection at the PEC walls (27 phase shift).

Our final example is afforded by a line source E polariza-
tion with the same previous parameters (a=30°, 6,=90°,
pp=9 cm), but f=15 GHz, and for a wedge in free space
(full solution). The ray optics picture calls for an image at the
location of the lower air-LHM interface at a distance p, from
the vertex, and this is precisely what is observed by the series
solution shown in Fig. 6, which shows the magnitude of the
time-harmonic field |E(7)|, which has been obtained by sim-
ply taking the magnitude of the real part of Eq. (16). This
solution has been validated against an HFSS (Ansoft) model
on a smooth wedge cylinder as representative of the local
wedge geometry. HFSS can only model a finite wedge, and
without the smooth rounding provided by the cylindrical por-
tion, reflections off the ends would disturb the proper exci-
tation of polaritons (some disruption is still present at the
place of a higher-order discontinuity, the discontinuity in cur-
vature). In addition, since HFSS employs real lossy param-
eters e=u=—1+10.001, the calculation serves to validate our
analytical solution as the correct limiting solution in absence
of losses. The agreement is very good (see Fig. 7).

To summarize, an exact analytical solution to the canoni-
cal problem of scattering by a left-handed wedge or prism
has been found in the limit of no losses. The solution repro-
duces the ideal point image announced by Pendry et al. The
analysis also resulted in the introduction of a new kind of
resonator or photon localization device.
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